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Abstract. In this paper we propose a method for estimating the edge in-
fection probabilities in a generalized Domingos-Richardson model. The proba-
bilities are considered as unknown functions of a priori known edge attributes.
To handle this inverse infection problem, we divide the past data to learning
and test sets. Then we try to assign edge probabilities such that the model
results in infection patterns similar to the learning set, while we evaluate the
overall process by the test set. Usually not the edge probabilities themselves
are estimated, but their dependences on other available information, such as
the previous behaviors of nodes, like in [5, 6]. In our case these are vertex or
edge attributes. Mathematically we face with various optimization problems,
where the objective functions are known only implicitly. We study different
measures of goodness, and develop algorithms for the optimization and inves-
tigate the possible best estimations given the boundary conditions.

Keywords: Domingos-Richardson model, infection model, data mining
MSC 2000: 05C82, 91D30, 68U20.

† Corresponding author: bandras@inf.u-szeged.hu
Received: October 14, 2011
Published: October 24, 2011
DOI: DOI number



2 Systematic learning of edge probabilities in the Domingos-Richardson model

1. Background

Studying virus marketing Domingos and Richardson [1] introduced the so-
called Independent Cascade (or IC) model. In fact, Kleinberg, Kempe and
Tardos proved in [2] that certain form of this model is equivalent to Granovet-
ter’s Linear Threshold model [3]. In the IC model, we have a directed graph
G = (V,E) and for each e ∈ E, a 0 < we < 1 probability is given along with a
small set of initial adopters W0. The members of W0 are infecting neighboring
vertices in stages resulting in the set of total infected vertices W . This model
has been successfully extended and applied to many real life examples [4].

However, such a model requires the probabilities of infection assigned to
the edges are known a priori. This information is neither provided nor known
in most applications, i.e. the probabilities must be estimated by using part
data. These estimations are usually done with some intuition-guided trial
and error, mainly using other vertex or edge functions of the network. While
this crude approach greatly improves the earlier models for estimating credit
default or churn, it is definitely sub-optimal, so more systematic methods are
needed.

To handle this inverse infection problem, we take a generalized approach
to the original IC model. Instead of active or inactive nodes, for each v ∈ V
we define a probability pv, creating a probability distribution indicating the
chance of infection. This distribution can be viewed as an uninduced infection,
that has nothing to do with the network. In the process, due to the infections,
this a priori distribution changes to a posteriori distribution.

We assume that the a priori distribution is known as the input of the
method, and we aim to estimate the edge probabilites that results in an a
posteriori distribution close to the one, computed from the learning set. To
express the edge probabilities we use the attributes a0, . . . , an assigned to
the edges or nodes. The infection probabilities will be considered as we =
g(f0(a0), . . . , fn(an)), where g and the fi’s are some naturally selected func-
tions. Our goal is to estimate the parameters of functions g, f0, . . . , fn.

In order to solve the inverse infection problem, we have used grid search
and various gradient based approaches. For the purpose of measuring the
error, we have used the mean squared error.

2. Methods

In this section we will describe the methods, error measurements and test data
we have used.

To measure the precision of this estimation, we have used the mean square
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n m IC it error agents parameters runtime
34 79 10000 0.000123 8 7 651
34 79 10000 0.0000134 8 6 400
190 1216 10000 0.0000277 8 6 3932
190 1216 1000 0.000103 8 8 888
1000 2377 1000 0.000122 4 3 950

error: 1
|V |

∑
v∈V (p̂v−pv)2, where p̂v denotes the estimated infection probability

of the vertices and pv denotes the real a priori infection probability.
For the parameter estimation, we tried grid search and several gradient

based searches. For the latter, we have implemented both single and multi
agent variations. The gradient itself is estimated numerically.

We tested various benchmark graphs with different sizes and density,
mostly coming from the social sciences, including Zachary’s famous network.
The attributes of the edges as well as the function parameters were randomly
drawn from an uniform distribution.

3. Results

The following tables show the test results for three different test graphs with
differing number of parameters. Here n is number of nodes, while m is the
number of edges. IC it denotes the number of iterations the original IC
model was run to estimate the empirical distribution. Error denotes the mean
squared error, parameters the number of parameters to estimate and runtime
is the running time of the method in seconds1.

As can be expected, grid search is considerably slower, and does not scale
very well with the number of parameters. Acceptable running time can only
be reached by lowering the number of IC iterations and grid size, but this
results in decreased precision.

The gradient based approach is reasonably fast, and is able to support
higher IC iteration numbers resulting in increased precision. Adding additional
agents also improve the precision considerably.

Note, that due to the number of attributes used to compute the edge
probabilities and the possibly unknown functions, the error surface (objective
function) of this problem is quite complicted. Since it can have a large number
of local optima, finding the global optimum turned out to be a very difficult
problem. It should also be noted that the quality of the local optima can be

1Vas
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n m IC it error grid dist grid it parameters runtime
34 79 10000 0.000123 8 7 651
34 79 10000 0.0000134 8 6 400
190 1216 10000 0.0000277 8 6 3932
190 1216 100 0.000725 3 3 8 412
1000 2377 1000 0.000122 4 3 950

very good, meaning the difference from the global optimum is small.

4. Conclusions

In order to handle the inverse infection problem, we have tried to estimate
the unknown edge infection probabilities by taking the polinomial functions
of known edge attributes. Then we have tried to adjust the parameters of
these functions to minimize the mean squared error between the estimated
and known infection probabilities of the vertices. For this purpose we have
used grid and gradient search methods, resulting mainly in success, but with
different precision and time complexity.
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Proc. of the Challenges for Analysis of the Economy, the Business, and
Social Progress, (2009).

[5] A. Goyal, F. Bonchi and L.V. S. Lakshmanan, Proceedings of the
third ACM international conference on Web search and data mining,
(2010).

[6] K. Saito, R. Nakano and M. Kimura, Knowledge-Based Intelligent
Information, Part III, LNAI 5179, pp. 67–75, 2008.


